
P R IMA R Y R E S E A R CH A R T I C L E

Decreased plant productivity resulting from plant group
removal experiment constrains soil microbial functional
diversity

Ximei Zhang1,2 | Eric R. Johnston3 | Albert Barber�an4 | Yi Ren5 | Xiaotao L€u2 |

Xingguo Han2,6

1Key Laboratory of Dryland Agriculture,

MOA, Institute of Environment and

Sustainable Development in Agriculture,

Chinese Academy of Agricultural Sciences,

Beijing, China

2Institute of Applied Ecology, Chinese

Academy of Sciences, Shenyang, China

3School of Civil and Environmental

Engineering, Georgia Institute of

Technology, Atlanta, GA, USA

4Department of Soil, Water, and

Environmental Science, University of

Arizona, Tucson, AZ, USA

5Shanghai Majorbio Bio-pharm

Biotechnology Co., Ltd, Shanghai, China

6State Key Laboratory of Vegetation and

Environmental Change, Institute of Botany,

Chinese Academy of Sciences, Beijing,

China

Correspondence

Ximei Zhang, Key laboratory of Dryland

Agriculture, MOA, Institute of Environment

and Sustainable Development in Agriculture,

Chinese Academy of Agricultural Sciences,

Beijing, China.

Email: zhangximei@caas.cn

and

Xingguo Han, State Key Laboratory of

Vegetation and Environmental Change,

Institute of Botany, Chinese Academy of

Sciences, Beijing, China.

Email: xghan@ibcas.ac.cn

Funding information

National Key Research and Development

Program of China, Grant/Award Number:

2016YFC0500702; Strategic Priority

Research Program of CAS of China, Grant/

Award Number: XDB15010404

Abstract

Anthropogenic environmental changes are accelerating the rate of biodiversity loss

on Earth. Plant diversity loss is predicted to reduce soil microbial diversity primarily

due to the decreased variety of carbon/energy resources. However, this intuitive

hypothesis is supported by sparse empirical evidence, and most underlying mecha-

nisms remain underexplored or obscure altogether. We constructed four diversity

gradients (0–3) in a five-year plant functional group removal experiment in a steppe

ecosystem in Inner Mongolia, China, and quantified microbial taxonomic and func-

tional diversity with shotgun metagenome sequencing. The treatments had little

effect on microbial taxonomic diversity, but were found to decrease functional gene

diversity. However, the observed decrease in functional gene diversity was more

attributable to a loss in plant productivity, rather than to the loss of any individual

plant functional group per se. Reduced productivity limited fresh plant resources

supplied to microorganisms, and thus, intensified the pressure of ecological filtering,

favoring genes responsible for energy production/conversion, material transport/

metabolism and amino acid recycling, and accordingly disfavored many genes with

other functions. Furthermore, microbial respiration was correlated with the variation

in functional composition but not taxonomic composition. Overall, the amount of

carbon/energy resources driving microbial gene diversity was identified to be the

critical linkage between above- and belowground communities, contrary to the tra-

ditional framework of linking plant clade/taxonomic diversity to microbial taxonomic

diversity.
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1 | INTRODUCTION

Anthropogenic environmental changes, such as increased land alloca-

tion for agricultural use, nitrogen deposition, and the rising global

mean temperature, are accelerating the rate of biodiversity loss on

Earth (B�alint, Domisch, Paul, & Nowak, 2011; Dirzo & Raven, 2003).

It is a central goal in ecology research to investigate the effect of

plant diversity loss on soil microbial communities, for soil habitats
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possess the highest biodiversity on Earth and play critical roles in

driving multiple ecosystem functions such as carbon and nutrient

cycling (Fierer & Jackson, 2006; Fierer et al., 2012; Garbeva, van

Veen, & van Elsas, 2004; Jing et al., 2015; Lange et al., 2015). How-

ever, the relationships between plant and belowground microbial

communities remain elusive, owing to a high degree of heterogeneity

in situ and in response to environmental stimuli/change, making con-

sistent, reproducible patterns difficult to ascertain (Culman et al.,

2010; Eisenhauer et al., 2011; Goberna, Navarro-Cano, & Verd�u,

2016; Liu, Liu, Fu, & Zheng, 2007; Milcu et al., 2013; Prober et al.,

2015; Stephan, Meyer, & Schmid, 2000; Wardle et al., 1999; Zak,

Holmes, White, Peacock, & Tilman, 2003). Thus, predicting how

plant diversity loss will affect soil microbial diversity remains chal-

lenging, despite numerous recent innovations that have expanded

our capacity to characterize complex microbial communities. Plant

diversity loss is likely to both reduce plant productivity and commu-

nity structure (diversity and composition), and soil microbial commu-

nities may respond at both the taxonomic and functional levels. It is

not well understood which plant community attributes most crucially

influence belowground communities, nor which microbial features

are most responsive to aboveground alterations.

On one hand, plant productivity determines the amount of car-

bon/energy resources supplied to soil microbial communities. In fact,

net primary productivity has been demonstrated to play a fundamen-

tal role in driving both plant and animal diversity (Hutchinson, 1959;

Rosenzweig, 1995). For microorganisms in particular, the decrease in

productivity reduces the amount of plant-derived organic material

entering the soil, thus potentially stimulating microorganisms with

strong energy-acquisition abilities. On the other hand, plant commu-

nity structure largely governs the diversity of carbon/energy

resources (exudates and litter), syntrophic niche space (plant-microbe

interactions) and the diversity and composition of soil microhabitats

supplied to soil microorganisms (Hiiesalu et al., 2014; Kardol & War-

dle, 2010). Thus, the loss of aboveground plant diversity is tradition-

ally predicted to reduce belowground microbial diversity. However,

this intuitive hypothesis is supported by scarce in-situ empirical evi-

dence (Goberna et al., 2016; Milcu et al., 2013; Stephan et al.,

2000), and most studies did not observe a strong relationship

between above- and belowground diversity (Carney, Matson, &

Bohannan, 2004; Culman et al., 2010; Jing et al., 2015; McElroy,

Papadopoulos, & Adl, 2012; Millard & Singh, 2010; Porazinska et al.,

2003; Prober et al., 2015; Wardle, 2006; Wardle, Yeates, Wil-

liamson, & Bonner, 2003; Wardle et al., 1999). This phenomenon

implies that the relationship between above- and belowground com-

munity diversity may not be the most critical linkage between both

communities, or that the relationships are obscured by their com-

plexity and/or a limitation in currently applied/established commu-

nity analysis methods.

Until recent advances in metagenomic sequencing, which have

broadened and advanced our ability to analyze complex microbial

communities, most studies focused primarily on the taxonomic diver-

sity of soil microbial communities, such as by investigating rRNA

gene-based taxonomy. However, many recent studies have

demonstrated a greater association between microbial communities

and environmental factors (abiotic and biotic) through functional

gene assessment (Burke, Steinberg, Rusch, Kjelleberg, & Thomas,

2011; Louca, Parfrey, & Doebeli, 2016; Nemergut et al., 2013;

Zhang, Johnston, Li, Konstantinidis, Han, 2017). One explanation is

that microbial species can share their genetic material easily through

horizontal gene transfer, and thus taxonomic diversity could be mis-

matched from functional gene diversity (Konstantinidis et al., 2009;

Thomas & Nielsen, 2005). A recent population-level investigation of

soil microbiota revealed that many coexisting community members

within 97% 16S rRNA gene similarity possessed distinct (i.e., not

shared) functional traits related to SOM utilization/degradation, and

demonstrated how recent disturbances can result in the loss (or

acquisition) of several functional traits in just a few years (Johnston

et al., 2016). Also, many functions, particularly those for the degra-

dation of plant litter, are widespread across phylum boundaries.

Meanwhile, the ecosystem functioning of soil microbial communities,

such as soil respiration/organic matter decomposition activity, has

shown a significant response to plant diversity in several studies

(Eisenhauer et al., 2010; Lange et al., 2015; Meier & Bowman, 2008;

Steinauer et al., 2015; Stephan et al., 2000). These results imply that

plant diversity loss may influence the microbial functional gene

repertoire; thus, microbial functional gene diversity may be more

sensitive to plant diversity loss than taxonomic diversity (Barber�an,

Fern�andez-Guerra, Bohannan, & Casamayor, 2012).

Studies investigating above- and belowground biodiversity rela-

tionships often adopted manipulative experiments (Carney et al.,

2004; Lange et al., 2014) or field investigations of natural communi-

ties (Barber�an et al., 2015; Garbeva et al., 2004). The manipulative

experiments often constructed artificial communities with a biodiver-

sity gradient by seeding a different number of plant species into

soils, in which the original vegetation had been removed and the

original soil physicochemical condition had been heavily disturbed.

The investigations of natural communities often compared communi-

ties at different spatial sites, which should have different species

components and physicochemical environments, besides the differ-

ent biodiversity per se, and thus, have limited utility for studying the

direct effects of plant community diversity on belowground biota in

the context of anthropogenic disturbance. Actual ecological commu-

nities are formed in a long-term process and the biotic/abiotic com-

ponents are closely linked, so the rapid biodiversity loss caused by

human activities might lead to a cascade of consequences. There-

fore, an experimental design manipulating biodiversity gradient in a

natural community, such as in situ removal of plant species (Chen

et al., 2016; Diaz, Symstad, Chapin, Wardle, & Huenneke, 2003;

Wardle et al., 1999; Wu et al., 2015), should be conducted to reveal

the impact of biodiversity loss.

Here, we conducted a five-year plant functional group (PFG)

removal experiment in a steppe ecosystem of Northern China, which

is representative of much of the Eurasian steppe region floristically

and ecologically (Li, Yong, & Li, 1988). We previously analyzed the

taxonomic diversity of soil bacterial communities through 454

pyrosequencing of 16S rRNA gene amplicons, and found that it was
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not changed by the PFG treatment (Zhang, Barber�an, Zhu, Zhang, &

Han, 2014). In this study, we employed shotgun metagenomic

sequencing to measure both the taxonomic diversity and the func-

tional gene diversity of soil microbial communities in order to test the

following hypotheses: (i) plant productivity is more important than

plant community structure in driving soil microbial diversity, at least

over short to moderate timescales, (ii) microbial functional gene diver-

sity is more sensitive to PFG removal than microbial taxonomic diver-

sity, (iii) the decrease in plant productivity and diversity will promote

the contribution of deterministic relative to stochastic processes in

driving soil microbial diversity and composition, and (iv) the change in

microbial diversity will lead to a shift in microbial respiration.

2 | MATERIALS AND METHODS

2.1 | Study site, experimental design, and sampling

This study is part of the Inner Mongolia Grassland Removal Experi-

ment (IMGRE) from the Chinese Academy of Sciences. The detailed

experimental design has been described previously (Zhang et al.,

2014), and we provide only a brief summary here. The experiment

was conducted in a typical steppe semi-arid ecosystem (43°380N,

116°420E). The mean annual temperature is ~0.3°C and the mean

annual precipitation is 346 mm. The vegetation is dominated by Ach-

natherum sibiricum, Agropyron michnoi, Cleistogenes squarrosa, Leymus

chinensis and Stipa grandis. All plant species were classified into five

plant functional groups (PFGs) based on their life forms (Kong et al.,

2011; Mclaren & Turkington, 2010). Perennial bunchgrasses (PB),

perennial rhizome grass (PR) and perennial forbs (PF) comprised

about 49%, 36%, and 14% of the total aboveground biomass,

respectively, and they combined to comprise >99% of the total bio-

mass (Zhang et al., 2014). A full combinatorial design was employed

with the three PFGs (a total of eight PFG combinations) and five

replicates (in five random blocks) for each combination. In other

words, there were four PFG diversity gradients: removing 0, 1, 2,

and 3 (all) PFGs. PFG diversity gradient was established in early July

every year from 2005 to 2009 by manual removal of the above-

ground biomass of non-target plants in each plot (6 m 9 6 m).

Stems and leaves were removed by clipping at the surface while tak-

ing great care to reduce disturbance to soil and other plants, and the

clipped plant material was removed from the plots.

In late August of 2009 (period with highest plant biomass),

aboveground vegetation was sampled by clipping all plants at the soil

surface using a 1 m2 quadrat randomly placed in the plot. All living

vascular plants were sorted to species, and were oven-dried at 65°C

for 48 hr and weighed (Data S1). The dry mass of all living plants

approximated the aboveground net primary productivity in this tem-

perate grassland (Bai et al., 2007; Sala & Austin, 2000). On 22 June

2010, four soil cores (10 cm deep, 3.5 cm diameter) were collected

from each plot at random and thoroughly mixed. After removing

roots and stones using a 2-mm sieve, part of the soil samples was

used to measure soil physicochemical indices and microbial respira-

tion and the rest was frozen for DNA extraction. Soil characteristics

(pH and the contents of total carbon, total N (nitrogen), NH4
+-N,

NO3
�-N and water) have been described before (Zhang et al., 2013).

Microbial respiration was measured with the alkali absorption

method (Hu & Bruggen, 1997). Briefly, the fresh soil (20 g dry

weight equivalent) was incubated in a 500-ml glass flask at 25°C in

the dark. The glass flask was connected to a glass tube (6 cm in

diameter), in which 5 mL of 50 mM NaOH solution was injected to

capture CO2 evolved by the soil. After four days of incubation, the

respired CO2 was determined by titrating the residual OH� with a

standardized HCl solution.

2.2 | Metagenomic sequencing, microbial
taxonomic/functional composition analysis

Soil DNA was extracted with the MoBio PowerLyzer PowerSoil

DNA isolation kit according to manufacturer’s instructions. To obtain

sufficient DNA for shotgun metagenomic sequencing and to over-

come the experimental constraints of soil habitat heterogeneity, 4–5

replicates were conducted for each sample (0.25 g soil per replicate).

In order to prepare DNA libraries for sequencing, DNA extracts were

processed according to the description of the Illumina Paired-End

Prep kit protocol. DNA was sheared mechanically, size-selected to

~180 bp and gel purified. Sequencing was performed on an Illumina

Hiseq 2000 platform located at Shanghai Majorbio Bio-pharm Tech-

nology Co., Ltd. 2.21 � 0.06 (mean � SE) Giga base pairs of DNA

sequences were generated for each sample (Table S1). While the

sequencing depth may appear relatively low, the large number of

replicated samples per treatment (five replicates) and the fact that all

datasets were similar in size, which makes comparisons of functional

diversity among datasets robust (Fierer et al., 2012; Rodriguez-R &

Konstantinidis, 2014; Zhang et al., 2017), offset the low coverage

and provided for meaningful comparisons.

To improve the reliability and quality of subsequent analysis, the

raw sequence data was processed with the following two steps.

First, the Seqprep software (https://github.com/jstjohn/SeqPrep)

was used to remove the adapter sequences. Second, the library

sickle (https://github.com/najoshi/sickle) was used to trim the reads

from 50 end to 30 end using a sliding window (size 50 bp, step by

1 bp). If the mean quality of bases inside a window drops below 20,

the remainder of the read below the quality threshold will be

trimmed. We also discarded quality-trimmer reads that were shorter

than 50 bp or containing N (ambiguous bases). Taxonomic profiling

of clean reads is proceeded by BLASTn (blast+ version 2.2.31, cut-

off e-value: 1e-5) analysis against the SSUrRNA database of silva

(Release 119 http://www.arb-silva.de) (Quast et al., 2013). According

to the results of taxonomic assignment, the taxon abundances are

assigned for the two taxonomic levels of kingdom and phylum. We

further calculated the relative abundances of bacteria, archaea, and

fungi, and also the relative abundance of each phylum.

Bacteria was dominant among the three groups, and we further

calculated its richness. 16S rRNA gene encoding metagenomic reads

were assigned against the 16S rDNA gene full-length sequences in

the Greengenes database (May 2013 release), which were
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subsequently clustered into OTUs (operational taxonomic units) at

the 97% threshold, using UCLUST closed-reference OTU picking in

Qiime (Caporaso et al., 2010). To exclude the influence of unequal

sampling, the relatively rarer OTUs with <1/892 relative abundance

(there were 892 reads assigned to OTUs in the smallest sample) in

each sample were removed for the calculation of OTU richness and

Shannon diversity.

Paired reads of shotgun metagenomic sequences were merged

with FLASH using default parameters (Table S1) (Magoc & Salzberg,

2011). Using MBLASTX, merged reads were mapped against the pro-

tein sequences from the STRING database (E-value cutoff 1e�6)

(Davis et al., 2013; von Mering et al., 2003). The abundance of each

COG (Clusters of Orthologous Groups) gene was counted as the

sum of reads mapping to it (Tatusov, Galperin, Natale, & Koonin,

2000), which was then normalized by the size of the dataset. To

exclude the influence of unequal sampling, the relatively rarer COG

genes with <10�6 relative abundance in each sample (there were >

106 reads assigned to COG genes for each sample) were removed

for the calculation of COG richness (Fierer et al., 2012), which was

used to represent the functional richness of soil microbial communi-

ties (5,580 � 29 functional genes per sample on average). These

COGs have been clustered into dozens of categories (there are a

total of 25 COG categories); for each COG category, we also calcu-

lated its relative abundance and functional gene richness.

Using MBLASTX, merged reads were also mapped against the

protein sequence of the KEGG database (Table S1) (E-value cutoff

1e�6; Kanehisa & Goto, 2000), and the relative abundance of each

KO gene was also calculated. To estimate the soil organic matter

(SOM) degradation potential of soil microbial communities, we

focused on the KO genes responsible for the degradation of plant

sugar materials (e.g., cellulose, chitin, poly-, oligo-, di-, and monosac-

charides), amino acids and aromatic compounds. A total of 277

SOM-degradation genes were identified in this study (Data S2).

2.3 | The relative contribution of deterministic and
stochastic processes

Two different methods were adopted to identify the relative contri-

bution of deterministic and stochastic processes in driving soil micro-

bial taxonomic/functional diversity (Chase, 2010; Zhang, Liu, Bai,

Zhang, & Han, 2011). The null model method compared the

observed communities to the stochastically assembled communities,

and thus assessed the deterministic effect caused by both current

experimental treatment and past historical factors (such as the envi-

ronmental changes occurred before the experimental treatment). In

contrast, the direct-calculation method compared the treatment

communities with the control communities and thus separated the

deterministic and stochastic components of only the treatment

effect (Zhang, Pu, Li, Han, 2016).

b diversity, which represents the compositional variation

between communities, is often used to infer the possible mecha-

nisms of community assembly (such as the relative importance of

deterministic vs. stochastic processes). However, the difference in

the b diversity indexes may be caused by differences in the ecologi-

cal processes, as well as a and c diversity. To exclude the influence

of the other two diversity components, Chase (2010) developed a

null model method, which compares the observed b diversity to the

theoretical b diversity from stochastically assembled communities.

Because this method depends on the presence or absence of OTUs/

genes and is sensitive to the noise from rare OTUs/genes, the

OTUs/genes with low abundance (bacteria OTU with <1/892 rela-

tive abundance and COG genes with <10�6 relative abundance)

were removed in each sample (Ferrenberg et al., 2013). To identify

the relative contribution of deterministic and stochastic processes in

driving soil microbial assembly, we analyzed the community data of

each treatment, following the steps of Chase (2010) and Zhou et al.

(2014). First, for any given pair of plots within the treatment, we cal-

culated the observed OTU/gene richness (e.g., a1 and a2 for plot 1

and 2, respectively) and the number of shared OTUs/genes (SSobs).

Second, the total number of OTUs/genes detected in the “OTU/

gene pool” (c diversity) from all plots of the treatment, and the pro-

portion of the plots occupied by each OTU/gene was measured.

Third, we calculated the distribution of the expected shared OTUs/

genes from the null model (SSexp) by randomly drawing a1 and a2

OTUs/genes from the OTU/gene pool with the probability of an

OTU/gene to be drawn proportional to its among-plot occupancy.

The SSexp and the expected Jaccard’s similarity (Jexp) are obtained

for each drawing, and the average Jaccard’s similarity (�Jexp) and its

SD are estimated based on 10,000 drawings (rexp). For each treat-

ment, permutational analysis of multivariate dispersions (PERMDISP)

was adopted to test the difference between the observed commu-

nity similarity (Jobs) and the average of the expected community simi-

larity (�Jexp) (Anderson, 2004). The non-significant difference (p > .05)

meant that stochastic processes were the primary driver of microbial

diversity, while the significant larger (or smaller) Jobs relative to �Jexp

suggested that the deterministic process of ecological filtering (or

competitive conclusion) was the primary driver.

To investigate whether the treatments affected the relative con-

tribution of deterministic and stochastic processes in driving micro-

bial diversity, the community data of all plots of all treatments was

analyzed together to calculate Jobs and �Jexp (and its rexp), following

the same steps as stated above. In other words, here the OTUs/ge-

nes of all treatments were taken as the OTU/gene pool. The magni-

tude of deterministic processes on community structure was further

quantified with the index of SES (standard effect size) (Kraft et al.,

2011; Zhou et al., 2014): SES = (Jobs��Jexp)/rexp. For each of the

eight treatments, the mean of SES value between every pair of repli-

cate plots was calculated. Linear regression was further used to con-

struct the relationship between the mean SES value of each

treatment and aboveground plant productivity.

The deterministic and stochastic changes in microbial taxonomic/

functional structure caused by each treatment were calculated with a

recently developed method (Zhang et al., 2016; Zhang et al., 2011).

Because there was no significant influence of spatial distance on soil

microbial structural variation among all plots (Mantel tests: taxonomic

structure, r = .036, p = .403; functional structure, r = .025, p = .358),
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we assumed that there was no systematic variation in the spatial

heterogeneity of these communities before the treatments were

applied. In other words, these plots were within a local homogeneous

area (the distance between any two plots was <300 m) with same

environmental conditions (e.g., climate and soil). Therefore, the com-

positional variation between plots is caused by the deterministic pro-

cesses of experimental treatments and the stochastic processes of

birth/death, dispersal/colonization, etc. The compositional variation

between the control plots is not caused by experimental treatments,

and the mean compositional variation between each pair of control

plots can be taken as the reference point. Although the compositional

variation between the control and treatment plots is caused by both

deterministic and stochastic processes, the changes of stochastic pro-

cesses are expected to be non-directional and those of deterministic

processes to be directional. Thus, for each treatment, the deterministic

change caused by the treatment can be approximated by: D = ([mean

compositional variation between control and treatment]�[reference

point]). For each treatment in every experiment, we used Mantel test

(Bonnet & Peer, 2002) to check the influence of the difference in soil

physiochemical indices among replicate plots on microbial structural

variation and found no significant effects for almost all treatments

(p > .05; Table S2), suggesting that deterministic processes were not

mainly responsible for the structural variation among replicate plots

and thus stochastic processes were the primary driver. Therefore, for

each treatment, the stochastic change induced by the experimental

treatment can be approximated by: S = ([mean compositional varia-

tion within treatment]�[reference point]). Then, for each treatment,

we could calculate the relative importance of the deterministic

change = jDj
jDjþjSj.

2.4 | Statistical analyses

Three-way analysis of variance (ANOVA) was used to assess the

effect of PFG composition on aboveground plant productivity and

the relative abundance of bacteria, archaea and fungi. Bray-Curtis

distance based on the relative abundance of bacterial phyla or COG

categories was calculated to represent taxonomic/functional compo-

sitional variation among these samples (Bray & Curtis, 1957), and

principal coordinate analysis (PCoA) was used to visualize the rela-

tive differences among these samples (Anderson, 2003). One-way

ANOVA was performed to assess the effect of the number of

removed PFG on aboveground plant productivity, the taxonomic/

functional richness and composition (represented by PCoA axis 1),

and microbial respiration. For multiple comparisons, the Least-Signifi-

cant Difference method and Tamhane’s T2 method was used for

equal and unequal variance, respectively. Pearson’s correlations were

used to analyze the effect of aboveground plant productivity on the

taxonomic/functional richness and compositional PCoA axis 1. In

addition, permutational multivariate analysis of variance (PERMA-

NOVA) was used to reveal the effect of PFG composition on the

taxonomic/functional structure based on Bray-Curtis distance matri-

ces (Anderson, 2005). Mantel test or partial Mantel test was

adopted to assess the relationships among the taxonomic structure,

functional structure, and the plant/soil indices (Bonnet & Peer,

2002). Stepwise regression analysis was used to identify the factors

that could effectively explain the changes in soil microbial gene

richness (and also the functional PCoA axis 1) from 13 potential

plant indices, including the presence/absence of each of the three

PFGs, removed PFG number, aboveground plant productivity, plant

richness, the biomass of seven dominant plant species (they taken

up >98% of the community biomass) and five potential soil physic-

ochemical indices, including soil pH, and the contents of total car-

bon, total N, available N and water. Before regressions, all the data

were tested for normal distribution. Collinearity was detected by

calculating the condition index for each explanatory variable and it

was less than 50 for each variable, suggesting autocorrelation did

not occur.

We further adopted structural equation modeling (SEM) to gain

a mechanistic understanding of how PFG removal affected soil

microbial taxonomic/functional structure and microbial respiration.

SEM is based on a simultaneous solution procedure, where the

residual effects of predictors are estimated (partial regressions) once

common causes from inter-correlations have been statistically con-

trolled for (Grace, 2006). The first PCoA axes were used in SEM

analysis to represent plant/PFG community composition and micro-

bial taxonomic/functional composition. We started SEM analysis

with the specification of a conceptual model of hypothetical rela-

tionships, based on a priori and theoretical knowledge (Fig. S1). We

assumed that the variation in plant community structure is repre-

sented by the changes in plant/PFG richness and composition. The

variation in plant community structure will change plant productiv-

ity, and both the structure and productivity will affect soil NO3
�-N

content, which has been found to be the only responsive soil

physicochemical variable to PFG removal (Zhang et al., 2014). The

changes in these plant and soil variables will affect soil microbial

taxonomic/functional richness and composition, and all these plant,

soil and microbial variables will affect microbial respiration (Fig. S1).

In the SEM analysis, we compared the model-implied variance–co-

variance matrix against the observed variance–covariance matrix,

and the data were fitted to the models using the maximum likeli-

hood estimation method. Adequacy of the models was determined

using v2 tests, and adequate model fits are indicated by a non-sig-

nificant v2 test (p > .05) (Grace, 2006; Wei et al., 2013). SEM analy-

ses were performed using AMOS 18.0 (Amos Development, Spring

House, PA, USA).

3 | RESULTS

3.1 | Response in plant productivity

Plant productivity decreased significantly only when both PR and PB

were removed (Figure 1a). When one of the two PFGs was

removed, the other would overgrow and thus the total productivity

changed little; in other words, there was a compensatory effect

(Wardle et al., 1999). This resulted in the phenomenon that as the

removed PFG number increased from 0–2 to 3, aboveground
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plant productivity first changed little and then decreased sharply

(Figure 1b).

Among the measured soil physicochemical indices, the treat-

ments only significantly changed soil NO3
�-N content, as reported

previously (Zhang et al., 2014). Soil NO3
�-N content was negatively

correlated with aboveground plant productivity (Pearson Correlation:

r = �.598, p < .001), meaning that the reduced productivity main-

tained less N in the plant biomass and thus there was excess

retained in the soil.

3.2 | Response in bacteria OTU diversity and
composition

Neither removed PFG number nor aboveground plant productivity

had significant effects on bacterial OTU richness (p > .05; Figure 2a,

b). The abundance-based index of Shannon diversity also showed

non-significant response (Fig. S2). These results were consistent with

the previous results from 454 pyrosequencing, which targeted only

at 16S rRNA gene (Zhang et al., 2014), further confirming these

findings.

Different from the non-significant effect on OTU richness,

removed PFG number and plant productivity changed soil bacterial

community composition (Figure 2c, d). PERMANOVA also revealed

that PB and PR removal had significant interactive effect on bacterial

community composition (p = .033). Mantel test also revealed that

bacterial community compositional variation showed a marginally sig-

nificant correlation with plant productivity (p < .10).

Taken together, the treatment changed the taxonomic composi-

tion but not the OTU diversity of the soil bacterial community. In

other words, the treatment stimulated some OTUs and depressed

others, but the total OTU richness remained unchanged. Actually,

aboveground plant productivity showed a marginally significant

(p < .10) positive correlation with the relative abundance of Aci-

dobacteria phylum, and significant negative correlations with those

of Actinobacteria, Armatimonadetes, Gemmatimonadetes and Nitro-

spirae phyla (Table S3).

3.3 | Response in functional gene diversity and
composition

Different from the non-significant effect on OTU richness, removed

PFG number and aboveground plant productivity had significant

effects on functional gene richness (p < .05; Figure 3a, b). Specifi-

cally, functional richness first showed a weak increase and then a

sharp decrease with increasing number of removed PFG (Figure 3a),

and showed a linear increase with increasing plant productivity (Fig-

ure 3b). The Shannon diversity of functional genes also showed a

similar response to removed PFG number and plant productivity as

the gene richness (Fig. S3). Stepwise regression analysis further

revealed that aboveground plant productivity was the primary

explanatory variable for the changes in the functional gene richness

(y = 4912 + 2.56*(plant productivity), p < .001). Actually, in 17 out

of all the 19 COG-categories, there was a positive linear relationship

between functional gene richness and plant productivity (Table 1).

Both removed PFG number and aboveground plant productivity

significantly changed the soil microbial community functional struc-

ture (Figure 3c, d). PERMANOVA also revealed that PFG composi-

tion had significant effects on the functional structure; specifically,

PR had a significant effect (p < .05) and PR and PB had a marginally

significant interactive effect (p < 0.10). Stepwise regression analysis

revealed that aboveground plant productivity was the primary

explanatory variable for the changes in the functional PCoA axis 1

(y = 0.005�0.000073*(plant productivity), p = .001).

Consistent with these results of stepwise regression analysis,

Mantel test revealed that functional gene richness was significantly

correlated with plant community productivity (p = .001; Table 2),

while the correlations with plant/PFG richness and composition

were non-significant (p > .05). Although microbial functional com-

position was significantly correlated with both plant productivity

and PFG richness (p < .05; Table 2), partial Mantel test revealed

that the correlation with plant productivity was still significant

when the effect of PFG richness was controlled, but the correla-

tion with PFG richness was non-significant when the effect of

plant productivity was controlled. Taken together, the treatment

conditions significantly altered both the functional diversity and

F IGURE 1 Effect of PFG composition and removed PFG number
on aboveground plant productivity. Error bars represent one
standard error. In the x axis of Figure 1a, PB, PR and PF represent
perennial bunchgrass, rhizome, and forbs, respectively, and “+”
means their combination
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composition of soil microbial communities, and the corresponding

change in plant productivity was identified as the primary driver of

these changes.

3.4 | Association between functional and
taxonomic diversity

The relative abundance of bacteria, archaea and fungi in the commu-

nity was about 93%, 6% and 1%, respectively. Among the three

groups, only the relative abundance of fungi showed a significant

positive correlation with aboveground plant productivity (Pearson

Correlation: r = .361, p = .022; Table S4). The result suggested that

the decline in functional gene diversity is partly attributable to the

decrease in fungi relative abundance.

Because fungi comprised only 1% of the relative abundance, the

decline in gene diversity observed here should not be caused by the

decrease in its relative abundance alone. The functional composi-

tional variation was significantly correlated with bacterial community

variation (Mantel test: P = .020), meaning that the variation in bacte-

rial community composition should also be responsible for part of

the decline.

3.5 | Difference between functional and taxonomic
diversity

Although the functional and taxonomic composition of soil microbial

community were correlated, the taxonomic and functional diversity

demonstrated somewhat unlinked responses to our experimental

manipulations. First, functional gene diversity decreased significantly

with reduced plant productivity (Figure 3b) but taxonomic OTU

diversity did not (Figure 2b). Second, functional b diversity (composi-

tional variation) showed a very significant correlation with plant pro-

ductivity (Mantel test: p = .001) but taxonomic b diversity showed

only a marginally significant correlations with plant productivity

(p < .10). Overall, the functional diversity was more closely associ-

ated with environmental factors than the taxonomic diversity.

F IGURE 2 Effect of removed PFG number and aboveground plant productivity on the taxonomic diversity (a), (b) and composition (c), (d) of
soil bacterial communities. Error bars represent one standard error. The value in the bracket of the y axis of Figure 2c and d represents the
percentage of community compositional variation explained by axis 1 of the PCoA [Colour figure can be viewed at wileyonlinelibrary.com]

4324 | ZHANG ET AL.



3.6 | The contribution of deterministic vs.
stochastic processes and the role of plant
productivity in driving microbial diversity

For the taxonomic OTU data, there were non-significant differences

between the observed and expected community similarity in seven

out of the eight treatments (p > .05; Table S5), suggesting that

stochastic processes were the primary driver for the changes in tax-

onomic diversity. In contrast, the observed similarity was significantly

larger than the expected similarity for the functional gene data in all

the eight treatments (p < .05; Table S5), suggesting that the deter-

ministic process of ecological filtering was the primary driver. Taken

together, deterministic processes played a more important role in

driving the functional than taxonomic diversity. Consistently, both

the SES values and the relative importance of deterministic changes

were smaller for the taxonomic structure than the functional struc-

ture (Figure 4), further confirming this conclusion.

There was a non-significant linear relationship between above-

ground plant productivity and the taxonomic SES value, but there

was significant negative linear relationship between plant productiv-

ity and the functional SES value (p < .05; Figure 4a). Also, a similar

relationship was observed between plant productivity and the rela-

tive importance of the deterministic change (Figure 4b). This sug-

gests that reduced productivity caused by PFG removal promoted

the contribution of deterministic, relative to stochastic, processes in

driving microbial functional diversity.

3.7 | Linkage between plant community indices,
microbial composition and respiration

As removed PFG number increased from 0–2 to 3, microbial respira-

tion first changed little and then showed a sharp decrease (Fig. S4).

More precisely, the change in microbial respiration was significantly

correlated with the variation in both plant productivity and microbial

functional composition, even when the effect of one of the two fac-

tors was controlled (p < .05; Table 2). Meanwhile, the correlation

coefficient was larger for aboveground plant productivity than for

microbial functional composition (0.407 vs 0.147; Table 2). These

F IGURE 3 Effect of removed PFG number and aboveground plant productivity on the functional diversity (a), (b) and composition (c), (d) of
soil microbial communities. Error bars represent one standard error. The value in the bracket of the y axis of Figure 2c and d represents the
percentage of community compositional variation explained by axis 1 of the PCoA [Colour figure can be viewed at wileyonlinelibrary.com]
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results meant that reduced plant productivity was the major driver

of changes in microbial respiration, and microbial communities have

likely adapted to productivity reduction by alteration of their func-

tional structure. Different from the functional structure, the variation

in microbial taxonomic composition did not show a significant corre-

lation with microbial respiration (p > .05; Table 2), consistent with

the different sensitivities of taxonomic and functional diversity to

the PFG treatments.

3.8 | Integrated response of the plant-soil-microbe
system to PFG removal

The final SEM model adequately fit the data describing interaction

pathways among plant, soil, and microbial variables in response to

PFG removal (v2 = 27.959, p = .141; standardized path coefficients

are given in Figure 5). As shown in the final model, plant community

structure was well represented by the four variables of species/PFG

richness and composition (p < .05). The model explained 60% and

97% of the variation in plant species richness and composition,

respectively, and 10% and 100% of the variation in PFG richness

and composition, respectively. The model also explained 6% of the

variation in plant productivity, 37% of the variation in soil NO3
�-N

content, and 82% of the variation in microbial respiration. The model

explained only 6% and 15% of the variation in microbial taxonomic

richness and composition, respectively, but explained 29% and 37%

of the variation in microbial functional richness and composition,

respectively (Figure 5).

Plant community structure had a non-significant effect on micro-

bial taxonomic/functional richness and composition. The decrease in

plant productivity did not change microbial taxonomic richness and

composition, but it significantly reduced microbial gene richness and

altered microbial functional composition (Figure 5). The decrease in

plant productivity had a direct negative effect on microbial respira-

tion. In addition, the decrease in plant productivity also had an indi-

rect effect on microbial respiration through altering microbial

functional gene composition, consistent with the result from Mantel

test (Table 2). The relationships between the remaining variables

were non-significant, but improved the model fit (Table S6).

4 | DISCUSSION

The importance of aboveground plant diversity to belowground

microbial diversity has always been assumed, but with little empirical

evidence to date (Fierer & Jackson, 2006; Lange et al., 2015; Zak

et al., 2003). In this study, we manipulated plant diversity in situ by

removing the aboveground biomass of different PFGs in the temper-

ate steppe ecosystem over a five year period and quantified both

the taxonomic and functional diversity of soil microbial communities.

The reduction in plant productivity caused by PFG removal was

TABLE 1 Linear regression results between the gene richness or relative abundance of each COG category and aboveground plant
productivity (only the results with p < .05 are shown)

COG category abbreviation and functional description

Gene richness Relative abundance

Slope p PFDR
a R2 Slope p PFDR R2

A: RNA processing and modification 0.150 0.003 0.005 0.217 5.54E-07 <0.001 <0.001 0.439

B: Chromatin structure and dynamics 0.103 <0.001 <0.001 0.380 4.16E-07 0.002 0.003 0.239

C: Energy production and conversion 0.052 0.042 0.042 0.107 -1.46E-05 0.005 0.005 0.195

D: Cell cycle control, cell division, chromosome partitioning 0.140 0.002 0.003 0.231

E: Amino acid transport and metabolism 0.052 0.005 0.007 0.193 -2.08E-05 0.001 0.002 0.261

G: Carbohydrate transport and metabolism 0.054 0.015 0.018 0.150 -1.04E-05 0.005 0.005 0.191

H: Coenzyme transport and metabolism 0.028 0.033 0.037 0.117 -6.72E-06 0.002 0.003 0.238

I: Lipid transport and metabolism 0.120 <0.001 <0.001 0.423 -1.14E-05 0.001 0.002 0.246

J: Translation, ribosomal structure and biogenesis 0.156 0.005 0.007 0.193

K: Transcription 0.218 <0.001 <0.001 0.305

L: Replication, recombination and repair 0.173 0.001 0.002 0.281

M: Cell wall/membrane/envelope biogenesis 7.41E-06 0.001 0.002 0.245

N: Cell motility 0.020 0.036 0.038 0.114 2.68E-06 0.001 0.002 0.241

O: Posttranslational modification, protein turnover, chaperones 0.327 <0.001 <0.001 0.356

P: Inorganic ion transport and metabolism 0.082 0.001 0.002 0.264

T: Signal transduction mechanisms 0.311 <0.001 <0.001 0.323 2.67E-05 0.002 0.003 0.224

U: Intracellular trafficking, secretion, and vesicular transport 0.239 <0.001 <0.001 0.318 3.90E-06 0.001 0.002 0.249

V: Defense mechanisms 5.87E-06 0.003 0.004 0.214

Z: Cytoskeleton 0.124 <0.001 <0.001 0.353 9.19E-07 <0.001 <0.001 0.584

aPFDR refer to corrected p-values using the false discovery rate (FDR) method (Benjamini & Hochberg, 1995).
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found to decrease the functional diversity, rather than the taxonomic

diversity, of soil microbial communities. This finding was confirmed

by Mantel test as well as SEM (Table 2; Figure 5), and the microbial

respiration data further supported our metagenome result by provid-

ing evidence of recent community activity that was affected by the

experimental treatment. Genetic and ecological mechanisms work in

tandem to drive the difference in the sensitivities of taxonomic and

functional diversity. Genetically, microorganisms can gain (via hori-

zontal gene transfer) and lose genes (Thomas & Nielsen, 2005), thus

obscuring taxonomic-functional relationships. There also exist many

microbial functions that are widespread across taxonomic boundaries

without being universally held within a clade; for instance, represen-

tatives capable of nitrogen-fixation have been identified from several

different microbial phyla, but this function is not ubiquitous in any

particular phylum (Dos Santos, Fang, Mason, Setubal, & Dixon,

2012). Thus, microbial species of close taxonomic relation could be

less functionally similar than to more distantly related species (Kon-

stantinidis et al., 2009). As a consequence, taxonomic and functional

diversity might be governed by different ecological drivers and relate

differently to biotic and abiotic environmental characteristics (Bar-

ber�an, Casamayor, & Fierer, 2014).

Ecologically, functional attributes should be more closely associ-

ated with environmental factors than the taxonomic attributes

(Burke et al., 2011). Consistent with this, the null model method

revealed that deterministic processes played a more important role

in driving functional gene diversity than taxonomic/OTU diversity

(Table S5), and that the deterministic factors of plant productivity

were comparatively less associated to taxonomic diversity (Figure 4).

Reduced plant productivity decreased the supply of fresh carbon/en-

ergy resources to soil microbial communities, which was overwhelm-

ingly dominated by heterotrophic microorganisms in the soil of this

steppe ecosystem (Liu, Zhang, & Wan, 2009). Thus, reduced produc-

tivity promoted the deterministic process of ecological filtering and

likely favored OTUs with a pronounced ability for efficient energy

usage under limiting conditions, which was supported by shifts in

the relative abundance of functional mechanisms.

There were two pieces of functional evidence. First, reduced

productivity increased the relative abundances of five COG-cate-

gories associated with energy generation/conversion and material

transport/metabolism (Table 1). The increase in these categories’

relative abundances with reduced plant productivity also led to a

decrease in the relative abundances of eight other functional cate-

gories, such as those for RNA processing and modification (see

details in Table 1). Second, reduced plant productivity also stimu-

lated the relative abundance of nearly every gene for the degrada-

tion of amino acids (Table S7), while it did not consistently

increase/decrease the relative abundances of all genes responsible

for the degradation of plant-derived sugar materials and aromatic

compounds. Actually, plant root exudates and litter are often

decomposed and transformed or assimilated by soil microbes into

other SOM components, such as amino acids and other non-sugar

polymer bacterial cell components (Kallenbach, Frey, & Grandy,

2016; Liang & Balser, 2011). Due to the lack of fresh sugar materi-

als as plant productivity decreased, soil microbial community mem-

bers might have become more reliant on the scavenging of

starved/dead microbial cells (Table S7), which is expected to be

more recalcitrant than fresh plant-derived carbohydrates. Reduced

plant productivity favored OTUs with these functions and accord-

ingly disfavored many other OTUs without these functions (but

likely with many other specific functional genes due to the tradeoff

in genomic content Konstantinidis & Tiedje, 2004), and thus the

relative abundance of the other OTUs would decrease in the eco-

logical filtering process, leading to the decline of the total gene

richness. In other words, greater energy availability/input is likely

needed to maintain such a high functional gene repertoire in this

soil environment.

TABLE 2 The relationships among plant and microbial community indices revealed by Mantel test or partial Mantel test

Method Effective factor Controlled factor

Microbial gene
richness

Microbial
functional
composition

Microbial respi-
ration

r p r p r p

Mantel test Plant productivity 0.191 0.011 0.268 0.001 0.449 <0.001

PFG composition �0.009 0.501 0.028 0.296 0.073 0.086

PFG richness 0.026 0.334 0.162 0.018 0.091 0.180

Plant species composition �0.005 0.503 0.049 0.209 0.050 0.178

Plant species richness �0.004 0.517 0.083 0.057 0.070 0.109

Partial mantel test Plant productivity PFG richness 0.229 0.002

PFG richness Plant productivity 0.074 0.146

Mantel test Microbial taxonomic composition 0.086 0.090

Microbial functional composition 0.238 0.001

Partial mantel test Plant productivity Microbial functional composition 0.407 <0.001

Microbial functional composition Plant productivity 0.147 0.019

p values < .05 in bold.
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In contrast to the diversity-diversity hypothesis, here we identi-

fied the key ecological linkage between above- and belowground

communities in this temperate steppe ecosystem; that was, reduced

plant productivity (rather than PFG diversity per se) intensified the

pressure of ecological filtering due to the lack of carbon/energy

resources and thus, decreased microbial functional gene diversity.

These results suggest that an increase in plant productivity might

relax the pressure of ecological filtering and promote the contribu-

tion of stochastic processes (e.g., dispersal) in community assembly

(Hubbell, 2001), and thus un-constrain microbial functional diversity.

Because it has been well demonstrated that primary productivity

plays a fundamental role in driving plant/animal diversity through

promoting stochastic processes (Chase, 2010; Hutchinson, 1959;

Rosenzweig, 1995), the key role of plant productivity in driving bio-

diversity seems to be general across both macro- and microbial com-

munities. However, here the effect of plant productivity on microbial

diversity was exhibited within a local ecosystem and over only five

years’ treatments, while plant productivity had a positive effect on

plant/animal diversity only over larger spatiotemporal scales (e.g.,

across different ecosystems) (Hutchinson, 1959; Rosenzweig, 1995).

The discrepancy at spatiotemporal scales was possibly because

microorganisms have shorter life history (greater turnover) than

higher organisms (Jessup et al., 2004).

It is also plausible that a larger quantity of belowground plant

biomass (e.g., roots), regardless of plant species, promotes the diver-

sity of chemical and physical micro-gradients in the soil, resulting in

a greater breadth of “niche space” (i.e., the density of unique life-

styles supported) represented in the soil subsample used for DNA

extraction and community analysis. This interpretation could also

provide a mechanistic explanation for the increased importance of

deterministic processes coinciding with reduced plant productivity;

specifically, microbes associated with these plant-induced micro-gra-

dients would be disfavored.

Another explanation for the comparatively stronger relationship

between plant productivity and microbial functional diversity is that

productivity could largely govern the number of effective intra-bac-

terial trophic levels supported, an idea that coincides with the “bot-

tom-up” community theory of trophic structuring (Fretwell & Barach,

1977). Previously, the abundance of soil microbiota was shown to

be almost entirely bottom-up regulated (Mikola & Set€al€a, 1988). And

while studies have begun to reveal the existence of several intra-

bacterial predator-prey relationships (Lueders, Kindler, Miltner, Frie-

drich, & Kaestner, 2006), the number of expected trophic chains, or

even the linearity of these linkages, is far from understood. It is plau-

sible that the height of the trophic pyramid (i.e., number of trophic

levels supported) constrains microbial functional diversity more so

than the breadth of unique detritivore strategies. This fundamental

ecological principle may also be relatable to the observed decline in

fungal relative abundance in treatments with low productivity and

the positive correlation between productivity and genes belonging to

the defense mechanisms COG category (Table 1), but its verification

requires future testing and an improved framework of soil food web

dynamics.

In this experiment, the treatment without all the three PFGs was

comparatively more distinguishable from all the other treatments,

because there was negligible aboveground plant biomass in this

treatment. While it seems illogical to attribute the effect of this

treatment to plant productivity alone, aboveground plant productiv-

ity was still identified to be the primary explainable variable for the

change in functional gene richness when the five samples of this

treatment were excluded from the stepwise regression analysis

(p = .019). Meanwhile, when this treatment was excluded, the treat-

ment of PR+PB removal had the smallest plant productivity (Fig-

ure 1a), which still caused larger functional SES value and larger

relative importance of deterministic change than the other six treat-

ments (Figure 4). Taken together, plant productivity was the most

important factor driving microbial functional gene diversity.

We did not observe an effect of PFG richness/composition on

microbial OTU diversity, which might be caused by several different

reasons. First, plant diversity is traditionally expected to drive micro-

bial diversity through providing more diverse types of carbon

resources (Garbeva et al., 2004); however, similar carbon resources

can be provided by different plant species (Klime�s & Klime�sov�a,

2002; Pan, Han, Bai, & Yang, 2002). Therefore, here we hypothesize

F IGURE 4 Effect of aboveground plant productivity on the SES
value (a) and the relative importance of the deterministic change (b)
for both the taxonomic and functional structure of soil microbial
communities
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that PFG richness/composition may have a comparatively small

effect on the diversity of carbon resources, resulting in only a small

stimulation effect on soil microbial taxonomic diversity, at least in

grassland ecosystems like the one studied here (forested areas char-

acterized by more numerous and diverse PFGs may offer a greater

diversity of carbon and nitrogen substrates to soil heterotrophs). This

hypothesis needs to be further confirmed in future studies. Second,

it should be noted that the key role of plant productivity and the

sensitive response of microbial functional diversity was found after

only a five-year treatment. Thus, a greater importance of PFG diver-

sity/composition and the response of microbial taxonomic diversity

may also be exhibited over larger temporal scales (Wardle, 2006;

Gao et al., 2013; Prober et al., 2015), particularly for less responsive

or slower growing microbial groups. In other words, microbial taxo-

nomic diversity may not have had sufficient time to respond to

changes in plant diversity/composition. Third, the definition method

of OTU (>97% similarity of 16S rRNA sequences) might not have

enough resolution to reveal the sensitive response to the PFG treat-

ments as functional gene diversity, as many coexisting members

within 97% similarity of the 16S rRNA sequences have been found

to possess many distinguishing (e.g., not shared) functional traits

(Johnston et al., 2016). Finally, it should be noted that here we

quantified the diversity of the bulk soil microbial communities, which

should be less associated with particular plant functional groups than

the rhizosphere communities (e.g., high specificity syntrophic rela-

tionships). In other words, a closer association between PFG diver-

sity and the taxonomic diversity of rhizosphere microbial

communities may have been found if included in the experimental

design.

In summary, reduced plant productivity (rather than the decrease

in PFG richness per se) decreased soil microbial functional gene

diversity, but not taxonomic diversity, through promoting the deter-

ministic process of ecological filtering. Thus, the maintenance of

plant productivity may be more paramount to conserve belowground

microbial functional gene diversity. The two dominant PFGs, PB, and

PR (especially PR, which has only one species of Leymus chinensis in

this ecosystem Zhang et al., 2014), have a crucial and compensatory

effect in maintaining plant productivity in this semi-arid steppe

ecosystem. Policies on biodiversity conservation should pay more

attention on perennial rhizomatous grasses and perennial bunch-

grasses for the sustainable management of this ecologically, cultur-

ally and economically important grassland ecosystem. However,

whether the key role of plant productivity still holds when

plant diversity loss is caused by other environmental change factors

F IGURE 5 Structural equation model analysis of the effect of PFG removal on plant-soil-microbe system. The final model fit the data well:
v2 = 27.959, p = .141, df = 21, n = 40. Numbers at solid arrows (p < .05) are standardized path coefficients (equivalent to correlation
coefficients), and width of the arrows indicates the strength of the relationships. The dashed arrows indicate non-significant relationships
(p > .05). Percentages close to variables indicate the variance explained by the model (R2)
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(e.g., climate warming) rather than PFG removal, requires further

investigation (Steinauer et al., 2015; Thakur et al., 2015).
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