当前位置:首页 > 新闻动态 > 学术进展

庞家平、温学发和孙晓敏在Science of the Total Environment最新发表的SCI论文

发布时间:2015-12-23

 

生态系统生态学是生态系统网络观测与模拟重点实验室的核心研究领域。自2006年以来,在于贵瑞研究员、孙晓敏研究员和李胜功研究员等研究所和实验室领导的支持与领导下,重点实验室稳定同位素生态系统生态学研究方向已经取得了快速的发展。孙晓敏研究员的博士研究生庞家平最新SCI论文发表在Science of the Total Environment (Pang JP, Wen, XF*, Sun, XM*, 2016. Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China. Science of the Total Environment (IF=4.099), 539, 322-330)。
大气CO2同位素组成是研究城市区域碳循环中人类活动和生物活动影响的理想示踪剂。2012年11月15日至2014年3月8日(包含两个供暖季和一个植物生长季),利用CRDS技术对北京近地层大气CO2和δ13C进行了原位连续观测。植物生长季CO2和δ13C的变异幅度均明显小于供暖季。δ13C和夜间(22:00 - 04:00)CO2来源的δ13C信号均表现出植物生长季富集,而供暖季贫化。供暖季CO2和δ13C均呈双峰型的昼夜变化,体现了交通早高峰的影响。化石燃料燃烧释放和生物呼吸释放对局地CO2和δ13C的相对贡献决定了其季节和日变化特征。假设供暖季夜间CO2主要来源为煤炭和天然气的燃烧释放,同位素质量守恒模型表明,供暖季I和II煤炭燃烧的贡献分别达到83.83±14.11 %和86.84±12.27 %,而天然气的贡献则只有16.17±14.11 %和13.16±12.27 %。其中背景大气CO2的δ13C是影响模型拆分结果的重要因素。供暖季I和II CO2和δ13C与空气质量评价指数(AQI)均呈现显著的线性关系,可以表征局地大气污染状况。供暖季北京大气CO2的主要来源以污染较重的煤炭燃料为主,能源消费结构的调整可以改善北京大气污染状况。
 
其它相关论文:
1.       Pang JP, Wen, XF*, Sun, XM*, 2016. Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China. Science of the Total Environment,539,322-330.
2.       Yang, B, Wen, XF*, Sun, XM*, 2015. Irrigation depth far exceeds water uptake depth in an oasis cropland in the middle reaches of Heihe River Basin. Scientific Report. 5, 15206; doi: 10.1038/srep15206.
3.       Yang, B, Wen, XF*, Sun, XM*, 2015. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region. Agricultural and Forest Meteorology, 201, 218-228.
4.       Hu ZM, Wen XF, Sun XM, Li LH, Yu GR, Lee X, Li SG*, 2014. Partitioning of evapotranspiration through oxygen isotopic measurements of water pools and fluxes in a temperate grassland. JGR-Biogeosciences, DOI: 10.1002/2013JG002367
5.       Huang Lvjun, Wen, XF*, 2014. Temporal variations of atmospheric water vapor δD and δ18O above an arid artificial oasis cropland in the Heihe River Basin. Journal of Geophysical Research–Atmospheres, 119, doi:10.1002/2014JD021891.
6.       Wen, XF*, Y. Meng, X.Y. Zhang, X.M. Sun, X. Lee*. 2013. Evaluating calibration strategies for isotope ratio infrared spectroscopy for atmospheric 13CO2/12CO2 measurement. Atmospheric Measurement Techniques,6, 1491-1501
7.       Wen, XF*, X. Lee*, X.M. Sun, J.L. Wang, Z.M. Hu, S.G. Li, and G.R. Yu. 2012. Dew water isotopic ratios and their relations to ecosystem water pools and fluxes in a cropland and a grassland in China. Oecologia. 168, 549-561.
8.       Wen, X.F*, X. Lee, X.M. Sun, J.L. Wang, YK Tang, S.G. Li, and G.R. Yu. 2012: Inter-comparison of four commercial analyzers for water vapor isotope measurement. Journal of Atmospheric and Oceanic Technology, 29, 235-247.
9.       Xiao W, Lee X*, Wen XF*, Sun XM, Zhang SC. 2012. Modeling biophysical controls on canopy foliage water 18O enrichment in wheat and corn. Global Change Biology, 18, 1769–1780
10.    Welp, LR*, Lee, XH, Griffis, TJ, Wen, XF, Xiao, W, Li, SG, Sun, XM, Hu, ZM, Martin, MV , Huang, JP. 2012. A meta-analysis of water vapor deuterium-excess in the midlatitude atmospheric surface layer. Global Biogeochemical Cycles, 26, GB3021, DOI: 10.1029/2011GB004246
11.    Zhang, SC, Sun, XM, Wang, JL, Yu, GR, Wen, XF*, 2011. Short-term variations of vapor isotope ratios reveal the influence of atmospheric processes. Journal of Geographical Sciences, 21,401-416
12.    Wen, XF, Zhang, S.C., Sun, X.M.,Yu, G.R., Lee, X.*, 2010. Water vapor and precipitation isotope ratios in Beijing, China. Journal of Geophysical Research-Atmospheres, 115, D01103, doi:10.1029/2009JD012408
13.    Wen, X.F., Sun, X.M., Zhang, S.C., Yu, G.R., Sargent, S.D., Lee, X.*, 2008. Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. Journal of Hydrology, 349, 489-500.

附件:

 

  1. 2016-Science of the Total Environment-温学发(2通讯作者).pdf