New gap filling strategies for long-period flux data gaps using data-driven approach

Minseok Kang¹, Kazuhito Ichii², Joon Kim^{1,3,4}, and Yohana M. Indrawati⁴

1National Center for AgroMeteorology, Seoul, South Korea

2Center for Environmental Remote Sensing, Chiba University, Chiba, Japan

3Department of Landscape Architecture and Rural Systems Engineering/ Institutes of Green Bio
Science and Technology, Seoul National University, Seoul, South Korea

4Interdisciplinary Program in Agricultural & Forest Meteorology, Seoul National University, Seoul, South Korea

(Correspondence: ms-kang@ncam.kr)

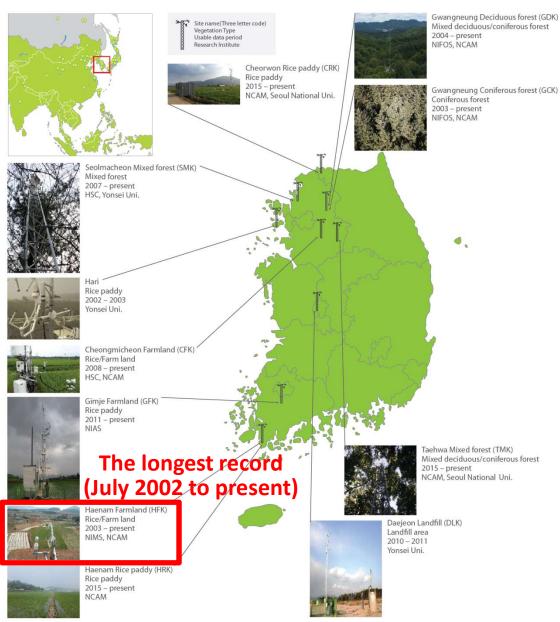
KoFlux - This year marks the 15th year anniversary.

• **KoFlux** is a Korean network of micrometeorological tower sites that use eddy covariance methods to monitor the cycles of carbon, water and energy between the atmosphere and the key

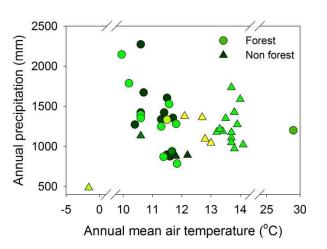
Mission and Purposes

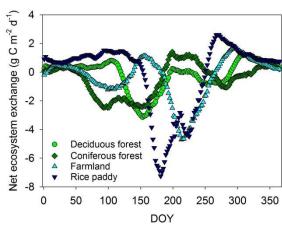
KoFlux embraces the mission of AsiaFlux

"thinking community, learning frontiers" to bring Asia's key ecosystems under observation to ensure quality and sustainability of life on earth


The main purposes of KoFlux are to provide

- (1) an infrastructure to monitor, compile, archive and distribute data for the science community and
- (2) a forum and short courses for the application and distribution of knowledge and data between scientists including practitioners


Objectives

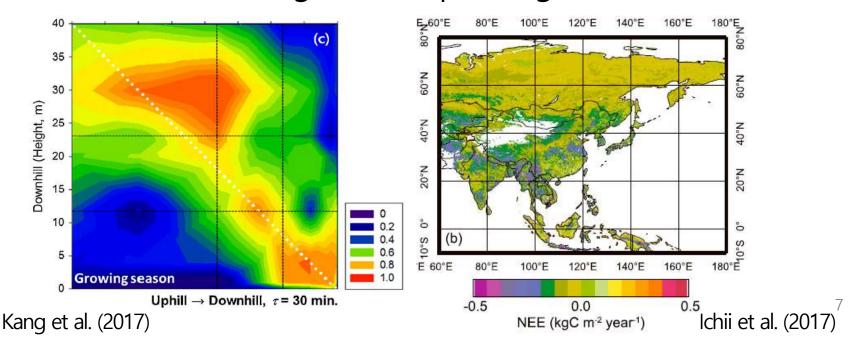

Specific objectives are

- (1) to quantify carbon/water/energy cycles
- (2) to understand mechanisms and processes that drive carbon/water/energy cycles
- (3) to identify impacts of Asian monsoon on carbon/water/energy cycles
- (4) to conduct research and analysis for sustainability of ecological-societal system based on resilience thinking
 - (5) to train professional manpower

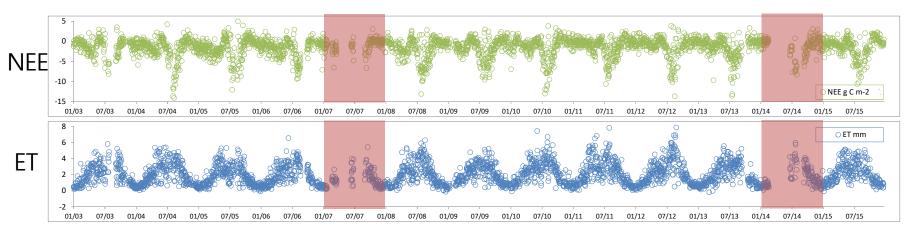
KoFlux Network

+ 5 overseas sites (Tibet, Thailand, leodo: terminated **Arctic, Antarctic: ongoing**)⁵

Next 15 years – Rural Systems Visioneering


We try to help rural off-grid villages to overcome their fundamental concerns: (1) lack of resources, (2) lack of infrastructure, (3) lack of quality education and training, and (4) lack of motivation, vision and its engineering (i.e., visioneering).

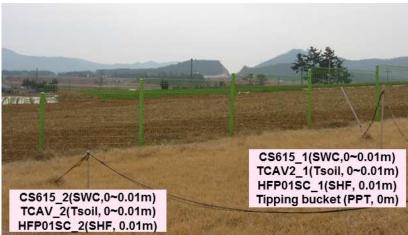
1st stage of the next 15 years - Capacity building


- (1) Flux measurement 'everywhere, all of the time'
 Secure measurement techniques for more various environment with higher accuracy
- (2) Flux estimation 'everywhere, all of the time'
 Secure connection techniques between in-situ observation and remote sensing for extrapolating flux measurement

Problem statement

- The HFK site is located in a typical Korean farmland.
- The long-term database at the HFK is vital to better understand how the farmlands have adapted and been managed with natural and/or human disturbances at various time and spatial scales.
- The long gaps mainly due to power break in 2007 and 2014 hinder the researchers from analyzing the decade-longtime series data.
- The general gap-filling method is impractical to apply for such long gaps.
- Data-driven approach is used to estimate terrestrial CO₂/H₂O fluxes. Such an approach can be applied to our case after appropriate modifications.
- In this presentation, we evaluate an applicability of data-driven approach to the filling of long gaps in flux data (i.e., GPP, RE, NEE, and ET).

Site description



Location	Southwestern end of Korean P eninsula (34.55°N, 126.57°E, 13 .74 m a. s. l.)
Topography	flat terrain except the southeas t (slope ±4°)
Land cover	the mixture of rice paddies and various seasonally cultivated crops within 300 meters, >300 meters rice paddies prevailed in the south and the west, scatt ered residential areas, roads and isolated forests.
Dominant	Rice and seasonally cultivated
species	crops (e.g., corn, sesame, chili)
Canopy height	1 m
Soil types	silt loam to loam (sand 38.5%, clay 30.0%)
Climate	hot-humid summer and cool-d ry winter
Annual mean Temperature*	13.3 ℃
Annual Precipitation*	1306 mm

• The HFK site is located in a typical Korean farmland which is characterized by mosaic patches of various agricultural lands.

Measurement

Is flux observation in long-term networks actually science? (Schmid, 2015)

Difference in scientific strategy

- General observations: 'controlled experiment' to examine questions, hypotheses and predictions. "what if...?"
- Observations in long-term networks: minimize the influence on the measurement to maximize their external validity. "what happens next?" or "how did this happen?"

External validity

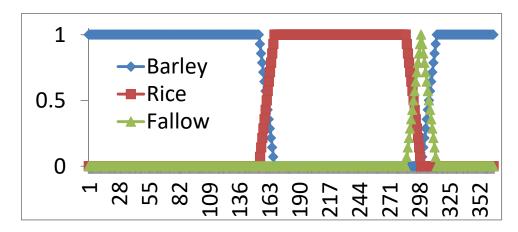
- Ecosystem-Atmosphere fluxes observations in long-term networks identify trends, temporal scales of variability, spatial patterns and variations.

Required condition

- The data are comparable (comparability, compare "apples to apples")
- A necessary condition is the compatibility of the sensors and procedures.
- To achieve comparability and compatibility, a useful tool is standardization.

Objective / Materials and Methods

Objective


To propose a new gap-filling strategy for long-period flux data gaps

Materials and Methods

Machine learning algorithm: Support vector regression (Ichii et al., 2017) Target variables: (Daily) ET (mm), GPP (g C m-2), RE (g C m-2), NEE (g C m-2)

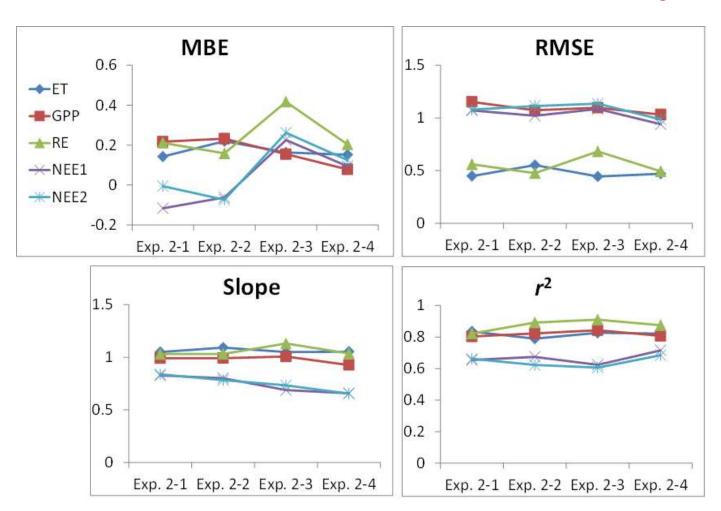
Input drivers:

Downward shortwave radiation (Rsdn), Air temperature (Tair, daytime), Vapor pressure deficit (VPD, daytime), Precipitation (PPT), Soil water content (SWC or LSWI), Leaf area index (LAI), Fuzzy transformation of the cultivation

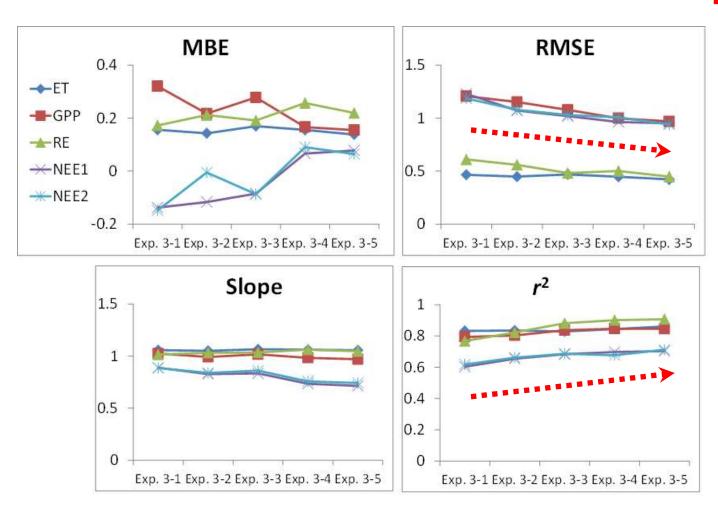
Hypotheses and experimental design

Hypothesis	Exp. no.	Target year	Training year	Input source	
Hyp. 1: Estimation using	1-1			In-situ	
in-situ measurement data for input to machine learning is more reasonable than that using remote sensing (or modeling) data	1-2	2010	2009, 2011	RS (and model)	
Hyp. 2: Closer (to gaps)	2-1 2-2		2008, 2010		
training dataset for machine learning results	2-2 2-3 2009	2006, 2011 2005, 2012	In-situ		
in better estimation	2-4		2004, 2013		
	3-1		2008 (or 2010)		
	3-2		2008, 2010		
Hyp. 3: Longer training dataset for machine	3-3	2009	2006, 2008, 2010, 2011		
learning results in better estimation	3-4		2005, 2006, 2008, 2010, 2011, 2012		
Communication	3-5		2004, 2005, 2006, 2008, 2010, 2011, 2012, 2013		

Hyp. 1: Using In-situ input data performs better than using RS input data Accepted

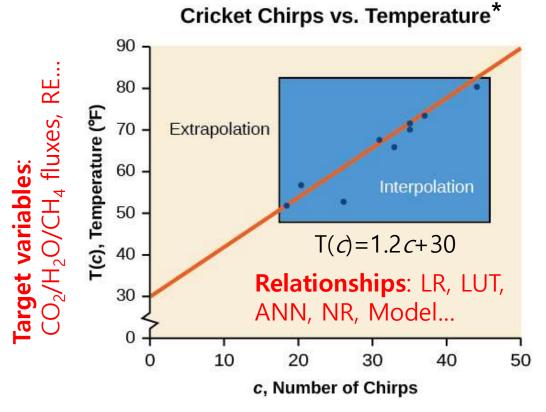

Ţ	
·S	
I	

Exp. 1-1	ET	GPP	RE	NEE1*	NEE2*
MBE	-0.13	-0.11	-0.14	-0.01	-0.03
RMSE	0.47	1.17	0.45	1.32	1.22
Slope	0.91	0.91	0.98	0.52	0.58
12	0.86	0.83	0.91	0.63	0.68

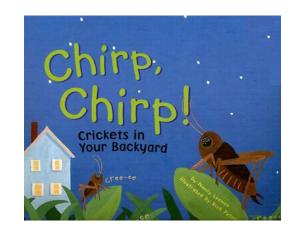

Exp. 1-2	ET	GPP	RE	NEE1	NEE2
MBE	-0.19	-0.09	-0.14	0.07	-0.05
RMSE	0.92	1.57	0.57	1.75	1.57
Slope	0.79	0.88	0.97	0.28	0.41
<i>p</i> ²	0.30	0.67	0.85	0.31	0.44

^{*}NEE1: Directly estimated, NEE2: Estimated RE – Estimated GPP

Hyp. 2: Closer (to gaps) training dataset results in better estimation Rejected

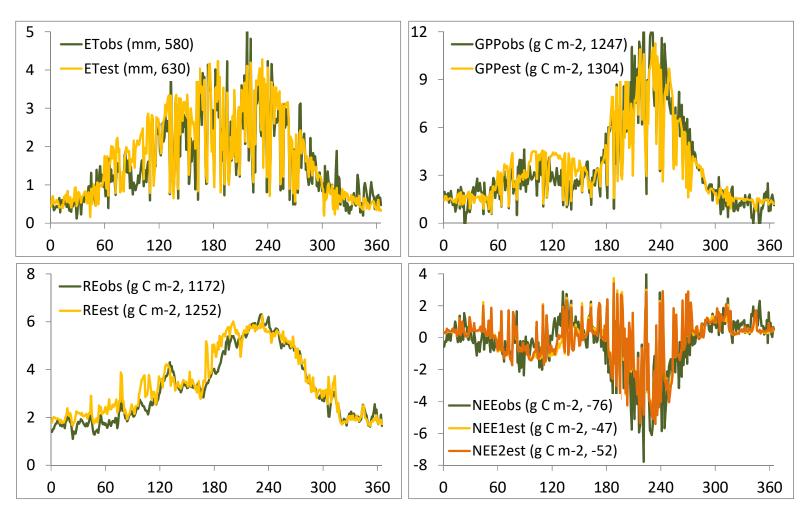


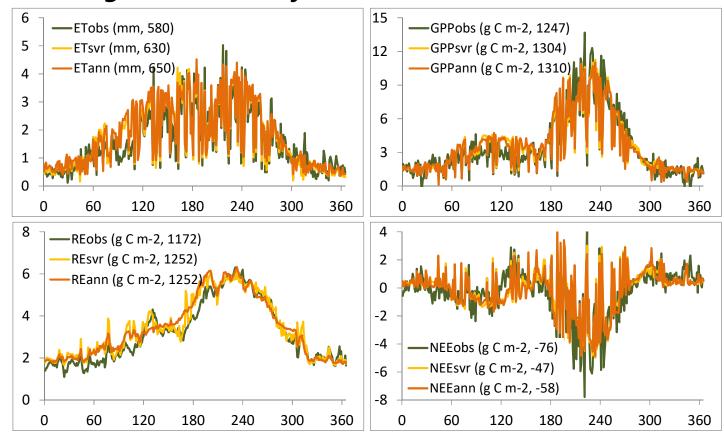
Hyp. 3: Longer training dataset results in better estimation Accepted



Nature of gap filling and partitioning

Interpolation and Extrapolation


Drivers: $R_{sdn'}$ $T_{air'}$ VPD, SWC...


Time series analysis

Acceptable... But, there is room for improvement.

Future plans

- Testing another flux database (a natural deciduous forest, GDK)
- Testing another machine learning technique (artificial neural network)
- Testing that data-driven approach can simulate the interannual variabilities of the fluxes
- Conducting residual analysis

